
CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

Modules 1-4A

Module 1

Binary

• Counting / bases

• (Unsigned) Binary: 0, 1, 10, 11, …

• One-to-one correspondence with natural numbers

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

Place Value: Base b (to decimal)

Digits D2 D1 D0

Place Value b^2 b^1 b^0

Place Value 
In terms of

Base
D2*b^2 D1*b^1 D0*b^0

Highlights
• Different bases have different strengths (for this course & computing)

• Decimal: Human’s “first learned base” (typically)

• Binary: On/off notation is convenient for building machines

• Hexadecimal: More human friendly than binary, but direct conversion to/
from binary

• Arithmetic in all (these) bases can be though about based number lines
(Ex: Addition of positives is moving to the right on the number line)

Highlights

• Often used for “encoding” — using a binary number to represent some
concept

• Ex: State Encodings represent the concept of a state machine’s state.
 (Numeric value, but numeric value may not be significant)

• Ex: ASCII (encoding English letters)

Negatives

• We’ve focused on numbers with a fixed width (i.e., n digits)

• Multiple representations

• Sign/Magnitude: Like the notion of the “-“ in decimal representations

• Two’s Complement: Divide the number line into non-neg and negs. Convenient:

• Can use modified place-value rules to do human-friendly conversions.

• Can use same rules for addition as with unsigned

Dividing the Line
• Split the line in half, like we’ve already done.

• How can we identify if a binary number is positive or negative?

• Ex: 010? Or 110?

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

2’s comp 
behavior: -4 —3 -2 -1

Module 2

Boolean Algebra

• Rules / processes to manipulate true/false statements and values

• Formal Algebraic Rules
(partly from from George Boole’s “The Mathematical Analysis of Logic”)

• Basic operations: AND, OR, Not

• Doesn’t represent notion of time or real-world behavior

Boolean Algebra

Boolean Algebra

Boolean Algebra

Tables & Truth
• Truth tables: Provide full behavioral description of inputs/outputs

• Common Digital Logic representations:

• AND via “multiplication”

• OR via “addition”

• Why? Order of operations is familiar

• Result: A “product term” is an AND expression

Tables & Truth

• Minterm:
Product term that includes all input variables once (possibly with a negation)

• Corresponds to “Selecting a row” of a truth table

• Canonical Sum-of-Products form: Sum (OR) term of all the Minterms for an
output

• Look-up-table (LUT): Idea of “looking up” a set of inputs in a truth table
 to determine the ouput

Karnaugh Maps

• Convenient visual tool for a type of optimization

• Allows easily combining terms

• Limited to ~4 variables (typically)

• If possible, reduces width of AND gates (smaller product terms) and
 number of OR terms (smaller sum)

Digital Machines

• Schematic symbols

• “Schematic Capture” : Converting design to digital format
 s(like creating a circuit diagram in JLS)

Machines introduce practical concerns

• How fast/slow is it?

• How much space does it take?

• How much power does it require? / How much does it cost to operate?

• How much does it cost to construct?

• Leads to: How do different implementations compare?
and “What is best”? (Best for what?)

Module 3
Beyond Combinational Logic

(Beyond things that can be simple tables)

SR Latch: A way to store a value!

D-Latch: A better way to store data

• Start with SR Latch

• Describe Desired Behavior (of output, Q)

• Just combinational logic

• Reset = Clock * /Data
Set = Clock * Data

. Qprev

. Qprev

CLOCK DATA Q

0 0

0 1

1 0 RESET

1 1 SET

D-Latch

D-Latch

• “Latches on” to last data value when clock goes low

• Is sensitive to the level of the clock

• Is “transparent” when the clock is high

• A bit inconvenient

D Flip-Flop: More precision

• Combines two D-latches using
opposite levels

• Results in behavior that is edge
sensitive: Very precise

Synchronous Sequential Circuits
• Synchronized by a clock

• Utilize D Flop Flops and combinational logic

• Clock can ensures proper behavior

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

(Deterministic) Finite State Machines

• Concept that can be used for many practical problems

• States: The current “condition” of the machine
 (Requiring some concept of current location)

• Arc: Describe why/when to change states (based on inputs)

• Outputs: Based on state and input (latter in Mealy machines)

• Our implementations: Clock controls timing of when states may change

State Machines
• Just combine prior ideas

• Binary encoding / State table: Uses binary encoding to represent state

• State tables: Truth table that captures the “arcs”

• Output tables: Truth table that captures how outputs behave

• All those are simple combinational logic concepts:

• Can be represented with equations

• Can be built using gates

• Specific design can be depicted with gate-level schematic

FSM: Moore Machine Structure

CLK
M Nk knext

state
logic

output
logic

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

 tpd = 10
tcd = 8

 tpd = 9
tcd = 7

: 6 : 2 :6
: What’s needed?

What’s the max clock?

tpcq tccq tsetup

thold

Dff Time Parameters

• : Propagation delay from Clock to Q (pcq)

• : Contamination delay from C to Q (ccq)

• : Setup time (for d before clock)

• : Hold time (for d after clock)

tpcq

tccq

tsetup

thold

D Q

Module 4

Hardware Description Languages
(HDLs)

• Specifies logic function only

• Computer-aided design (CAD) tool produces or synthesizes the optimized
gates

• Most commercial designs built using HDLs

HDL

• A HDL is NOT a computer program!

(System) Verilog Module Example

module example(input logic a, b, c,
 output logic y);
 // module body goes here
endmodule

Input & Output
are like the Pins
On chips or in

JLS

HDL: Structural (Verilog)

module nand3(input logic a, b, c
 output logic y);
 logic n1; // internal signal

 and my_and(n1, a, b, c); // instance of and3
 not my_inverter(y,n1); // instance of inv
endmodule

HDL: Behavioral (Verilog)

module nand3(input logic a, b, c
 output logic y);
 assign y = ~(a & b & c);
endmodule

