CSE 260M / ESE 260 Intro. To Digital Logic & Computer Design

Bill Siever & Michael Hall

Modules 1-4A

Module 1

- Counting / bases
 - (Unsigned) Binary: 0, 1, 10, 11, ...
 - One-to-one correspondence with natural numbers

Place Value: Base b (to decimal)

Digits	D2	D1	D0
Place Value	b^2	b^1	b^0
Place Value In terms of Base	D2*b^2	D1*b^1	D0*b^0

Highlights

- Different bases have different strengths (for this course & computing)
 - Decimal: Human's "first learned base" (typically)
 - Binary: On/off notation is convenient for building machines
 - Hexadecimal: More human friendly than binary, but direct conversion to/ from binary
 - Arithmetic in all (these) bases can be though about based number lines (Ex: Addition of positives is moving to the right on the number line)

Highlights

- Often used for "encoding" using a binary number to represent some concept
 - Ex: State Encodings represent the concept of a state machine's state. (Numeric value, but numeric value may not be significant)
 - Ex: ASCII (encoding English letters)

Negatives

- We've focused on numbers with a fixed width (i.e., n digits)
- Multiple representations
 - Sign/Magnitude: Like the notion of the "-" in decimal representations
 - Two's Complement: Divide the number line into non-neg and negs. <u>Convenient</u>:
 - Can use modified place-value rules to do human-friendly conversions.
 - Can use same rules for addition as with unsigned

Dividing the Line

• Split the line in half, like we've already done.

- How can we identify if a binary number is positive or negative?
 - Ex: 010? Or 110?

Module 2

- Rules / processes to manipulate true/false statements and values
- Formal Algebraic Rules (partly from from George Boole's "The Mathematical Analysis of Logic")
 - Basic operations: AND, OR, Not
- Doesn't represent notion of time or real-world behavior

Table 2.1 Axioms of Boolean algebra

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1'	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	$1 \bullet 1 = 1$	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Table 2.2 Boolean theorems of one variable

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Table 2.3 Boolean theorems of several variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C) + D = B + (C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$ \begin{aligned} (B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) \\ = (B \bullet C) + (\overline{B} \bullet D) \end{aligned} $	T11′	$\begin{array}{l} (B+C) \bullet (\overline{B}+D) \bullet (C+D) \\ = (B+C) \bullet (\overline{B}+D) \end{array}$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots)$	T12′	$\overline{B_0 + B_1 + B_2 \dots} = (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots)$	De Morgan's Theorem

Tables & Truth

- Truth tables: Provide full behavioral description of inputs/outputs
- Common Digital Logic representations:
 - AND via "multiplication"
 - OR via "addition"
- Why? Order of operations is familiar
- Result: A "product term" is an AND expression

Tables & Truth

• Minterm:

Product term that includes all input variables once (possibly with a negation)

- Corresponds to "Selecting a row" of a truth table
- Canonical Sum-of-Products form: Sum (OR) term of all the Minterms for an output
- Look-up-table (LUT): Idea of "looking up" a set of inputs in a truth table to determine the ouput

Karnaugh Maps

- Convenient visual tool for a type of optimization
 - Allows easily combining terms
 - Limited to ~4 variables (typically)
 - If possible, reduces width of AND gates (smaller product terms) and number of OR terms (smaller sum)

Digital Machines A B

- Schematic symbols
 - "Schematic Capture" : Converting design to digital format s(like creating a circuit diagram in JLS)

Machines introduce practical concerns

- How fast/slow is it?
- How much space does it take?
- How much power does it require? / How much does it cost to operate?
- How much does it cost to construct?
- Leads to: How do different implementations compare? and "What is best"? (Best for what?)

Module 3 Beyond Combinational Logic (Beyond things that can be simple tables)

SR Latch: A way to store a value!

D-Latch: A better way to store data

• Start with SR Latch

- Describe Desired Behavior (of output, Q)
- Just combinational logic
- Reset = Clock * /Data
 Set = Clock * Data

CLOCK	DATA	Q
0	0	. Q _{prev}
0	1	$\cdot Q_{prev}$
1	0	RESET
1	1	SET

D-Latch

- "Latches on" to last data value when clock goes low
 - Is sensitive to the *level* of the clock
 - Is "transparent" when the clock is high
- A bit inconvenient

D *Flip-Flop*: More precision

- Combines two D-latches using opposite levels
- Results in behavior that is *edge sensitive*: Very precise

Synchronous Sequential Circuits

- Synchronized by a clock
 - Utilize D Flop Flops and combinational logic
 - Clock can ensures proper behavior

(Deterministic) Finite State Machines

- Concept that can be used for many practical problems
 - States: The current "condition" of the machine (Requiring some concept of current location)
 - Arc: Describe why/when to change states (based on inputs)
 - Outputs: Based on state and input (latter in Mealy machines)
 - Our implementations: Clock controls timing of when states may change

State Machines

- Just combine prior ideas
 - Binary encoding / State table: Uses binary encoding to represent state
 - State tables: Truth table that captures the "arcs"
 - Output tables: Truth table that captures how outputs behave
- All those are simple combinational logic concepts:
 - Can be represented with equations
 - Can be built using gates
 - Specific design can be depicted with gate-level schematic

Dff Time Parameters

- *t_{pcq}*: Propagation delay from Clock to Q (pcq)
- *t_{ccq}*: <u>Contamination delay from C</u> to <u>Q</u>(ccq)
- *t_{setup}*: Setup time (for d before clock)
- *t_{hold}*: Hold time (for d after clock)

Module 4

Hardware Description Languages (HDLs)

- Specifies logic function only
- Computer-aided design (CAD) tool produces or synthesizes the optimized gates
- Most commercial designs built using HDLs

• A HDL is <u>NOT</u> a computer program!

(System) Verilog Module Example

Input & Output are like the Pins On chips or in JLS

HDL: <u>Structural</u> (Verilog)

а b с

module nand3(input logic a, b, c output logic y);

logic n1;

// internal signal

and my_and(n1, a, b, c); // instance of and3 not my inverter(y,n1); // instance of inv endmodule

HDL: <u>Behavioral</u> (Verilog)