CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

This week

* Homework 6B posted - Due Tuesday, April 8th by 11:59pm

» Gradescope dropbox on Thursday

 Thursday: Won’t need Kits

Studio 6A

https://washu-cse260m-sp25.github.io/studios/studio06a

Foreshadowing: Simple RISC-V Computer

)

controll Register File

Unit ResultSrc

MemWrite (S RAM) _ RAM
o ALUControl,
ROM s e (DRAM)

(.teXt) Zero [RegWrite (' d ata‘)

N/

LK
CLK C\

: WE3 ~ E
jPCNextMpC e RD1 Sl [Ty Za

A RD

1

= . RD ReadData
g \We’'ll “merge” these into a single RAM 2%

emory
Register 2
WD3 File WD

PCTarget
> + 2
ImmExt
= Extend
PCPlus4

Result

Basic Model

 Machine is basically 2-3 memories + CPU
* Registers (small, easy to use; temporary/ephemeral)
 Ex: You have 31, 32-bit data registers = 124 Bytes

e RAM: Place for most data (Gigabytes!)

 Program Memory: Possible in RAM or some additional “program memory”

Program -> Assembly Language ->
Machine Code -> Memory

Problem: Find x such that 2*' = 128

// determines the power

// of X such that Zx i
int pow = 1;

int x = 0;

while (pow != 128) {
POW = pOw * 2;
X = X £ 1

}

Behavior: Parts of CPU Model

Behavior: Parts of CPU Model

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018

00100413
00000493
08000293
00540863
00840433
00148493
FF1FFO6F

Chapter 6

Instruction Sets: Basic Categories

 Machine has small primitive set of “commands” in a few rough categories:

e Data Manipulation: “Computation” (typically uses an ALU)
siekel @, el it

« Data Movement: Move data between registers and RAM or initializing values
lw tO, 8(sp)
Iy el S

 Flow Control: Controlling what instruction happens next (loops, if/else, functions)
el 0, £l Clene

Foreshadowing: Simple RISC-V Computer

)

PCSrc

Control Data

Unit ResultSrc

MemWrite manipulation

op
funct3
funct7,

Zero
___/

LK
CLK C\

jPCNextM INE
EClA RD

2| ALUResul ReadData
] ~ g UResult
Instruction
Memory

RD1 ~~ Zero

WriteData

Flow Control

ImmExt

Data Movement: I Data Movement: g

Reg to Reg

Mem/Reg

“Stored Program” Concept

Place to store
machine code

A

)

PCSrc
Control
Unit ResultSrc

MemWrite

op ALUControl,,

funct3 |ALUSIrc

funct?; | ImmSre, ,

Zero [RegWrite
N/

Genius!

CI‘_K

WE3
A1 RD1

~~ Zero

Instruction
Memory

A2 RD2

A3
WD3 Register

D
— j ALUResult

WriteData

File

PCPlus4

PCTarget
~> + 4

ImmExt
31:7
Extend

ReadData

Result

260 Prereq: Intro to Programming

Programming Languages

* Prereq: Intro to Programming
e Consider large programs and how you manage info.
e Ex: A program/function that computes an average of three integers
« Java vs. Python vs. C

« Examples

P “TypeS”

Programming Langs: History &
Motivation

1.Efficiency: Allow more people to create programs

Compilers “compile” a high-level language (HLL) representation to a list of
simpler assembly language instructions

(Compilers are used obviously/explicitly in many languages, like Java & C;
Often behind-the-scenes in others, like Python)

2.Manage complexity / avoid problems (increasing focus)

Variables and Data Type rules are a large part of that

e Just 31, 32-bit registers (124

bytes)

* Used for all data operations!

Registers

Name Number

Usage

zero x0 Constant value O
ra x1 Return address
sp X2 Stack pointer
ap X3 Global pointer
tp x4 Thread pointer

e Very very different than HLL 10-2 i

No types

Meaning may change with time

Temporaries

s0/fp x8

Saved register / Frame pointer

si X9

Saved register

a0-1 x10-11

Function arguments / return values

a2-7 x12-17

Function arguments

s2-11 x18-27

Saved registers

t3-6 x28-31

Temporaries

a0: int (a)

mean (a, b, c) {
sum = a+b+c; .
sum/3.0: al: int (b)
s
a0: float
(result) 20: string (char *) al: float ,(copy of
averag average’s value)
average = mean(l, 3, 3);
printf(%f\n", average);

More Data!

)

PCSrc
Control

Unit [ResultSre Here!

MemWrite

op [ALUCOntrol, (But slower to
funct3 |ALUSrc

funct?, immsro. access)

Zero | RegWrite
N/

CI‘_K

CLK

WES
] PCNext |%7| PC A1 RD1 Zero

1 AoRD ALUResult ReadData
Instruction
Memory A2 RD2

A3

Register WriteData
WD3 "File

PCTarget
= >db 4
ImmExt
= Extend
PCPlus4

Result

The Rules

e Life Lesson
* | have an older brother...
« Who went to college

o |eft stuff at home...

 That | wasn’t supposed to touch!

The Rules

* Fun...

e And failure...

* Discovery: Just don’t be discovered!

* As long as things are put back exactly as | found them...

e Sharing Registers / Memory: You can do almost anything as long as you put
things back how you found them before finishing (but how?)

The Rules

* Register Conventions:
e “Convention” (agreement about use) for how registers will be shared
& Beyond — Memory & the “Stack Discipline”

* Rules for how to use memory for additional info

 And to use as the “copy” to restore to original condition

The Rules

e Memory
e Use part for the “run time stack”

* Create a “stack”: Like stack data structure (CSE 247 / 2407)

o Last-in-first-out

Why a stack

* main()
- run_game()
- update()

- update character ()

c Woezite Lirve)

Why a stack

* main()
- run_game()
- update()

- update character ()

Why a stack

* main()
- run_game()

- update()

Why a stack

* main()

- run_game()

Why a stack

* main()

LIFO with an array

 Use an array
* Keep track of index of “last item”

 Add / (push)

* Remove (pop)

Data / RAM

* Arrays (in programming languages) are just a representation of a segment of
RAM

 So, RAM works like arrays — index based
* There’s a “base”: The index that it starts at

« However, RAM is an array of BYTES

e Data types like an ‘int" are 4 bytes

Data / RAM

e Split it into regions to serve different purposes
e Stack

e Of records for all the currently running functions

Unitialize data
* Heap: A giant heap ‘0 memory
Initialized data

* For dynamic memory (new / malloc). Lowaddress
like in Java: Thing newThing = new Thing()

More Data!

] PCNext

CLK

1

[Mee
L

A RD

)

PCSrc
Control
Unit ResultSrc

High addres:

MemWrite

op ALUControl,,

funct3 |ALUSrc

funct7; | ImmSre,

Zero [RegWrite
—

CI‘_K

WE3
A1 RD1

~~ Zero

Instruction
Memory

A2 RD2

A3

WD3 Register

Unitialize data

D
~ j ALUResult

WriteData

File

PCPlus4

PCTarget
~> + 9

ImmExt
31:7
Extend

Initialized data

Low address

text

ReadDa

Result

Studio 6A, Function Fun, & RA

https://washu-cse260m-sp25.github.io/studios/studio06a

Compiler Basics & Function fun
(sum.c)

Questions

« Why RVC / reduced instruction sizes?

 Smaller inst memory -> Faster / cheaper;
Don’t waste $ on unneeded resources!

 Why isn’t RISC-V more popular? Still very new.

 Why not Intel? (Or ARM?) Isn’t this messier?

int 1.
int scores[200];

Arrays

// use sl
// use sO@ for the base of scores

for (i = 0; 1 < 260 | = 1 1
scores[1] = scoresji] t 10

Next Time

e Studio

