CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall



This week

« Homework 6A posted tonight
» Gradescope dropbox by Thursday

 Thursday: Won’t need kits

* Will post to Piazza when available Will span week.



Studio 5


https://washu-cse260m-sp25.github.io/studios/studio05

Chapter 5



Review: Register File

 ALU will Need TWO inputs: need a memory structure that provides two
values (l.e. dual output ports)

CLK
* The “Register File” e A|1 W:E3 RO 93?
* Also supports writing (updating) ~— A2 RD2 ”37
—— A3 _
’3? WD3 Relgillséter




Big Picture: add x, y, z

19:15

24:20

11:7

Cll_K ‘

WE3
A1 RD1
A2 RD2
A3

Register
WD3 "File

SrcA [\I\

ALU

Zero

ALURes!I

0 |SrcB




Verilog: RISC-V Register File

// 32 x 32 register file with 2 read, 1 write port

module regfile (input logic clk,
input logic we3,
input logic [4:0] ral, ra2, wa3,

input logic [31:0] wd3,
output logic [31:0] rdl, rd2);

logic [31:0] rf[31:07];

always ff @ (posedge clk)
if (we3) rfl[wa3l] <= wd3;

assign rdl = rflrall];
assign rd2 = rfl[ral]l;
endmodule



FPGA

* Field Programmable
« Gate Array

» Lattice iCE40 UP5k: Architecture Overview

RAMs, (Dual and Single Port)

Look Up Tables (LUTs): 4 inputs

D Flip Flops

Lots: ~5,000



Questions

 Why so many memory types / what are the differences?
* Evolution over time

» Different needs: Capacity vs. Need — the memory hierarchy


https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

 PLA vs. FPGA
* PLA: (largely) 2-level logic / simple combinational logic

« FPGA: Array of many proarammable blocks with programmable
interconnects

» Can efficiently achieve more than 2-layer logic

 Memory/storage is inherent (can do full state machine...see hw 4b)


https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

Chapter 6



Architectures

* “Architecture”: Programmer’s view of CPU
* “Instruction Set Architecture” (ISA):
Precise details of structure of cpu model, instructions, their
semantics, and their encoding
 Examples: RISC-V, ARM, MIPS, x86/1A64
* Microarchitecture: How CPU is built to read/do ISA

* Where Digital Logic becomes actual machine!


https://en.wikipedia.org/wiki/Instruction_set_architecture

RISC-V ISA

* “Open Source” ISA
 Book Covers / PDF: https://www.yellkey.com/impact (good for 24 hours)
 Assembly Language

 Machine Language


https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
https://www.yellkey.com/impact

Registers

Name Register Number|Usage

zero x0 Constant value O

ra x1 Return address

sp X2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporaries

s0/fp x8 Saved register / Frame pointer

s X9 Saved register

a0-1 x10-11 Function arguments / return
values

a2-7 x12-17 Function arguments

s2-11 x18-27 Saved registers

t3-6 x28-31 Temporaries




RISC-V Design Criteria

1. Favor regularity (things that are consistent)
a=b+c => add a,b,c
Subtract? (a=b-c)
e =>sub a,b,c

2. Make most used instructions fast (largest impact on performance)

3. Smaller is (usually) faster. Small, efficient memory can be key to performance.
Like...the register file!

4. Can’t do everything well: Compromises are necessary



Basic Model

* Machine is basically 2-3 memories + CPU
* Registers (small, easy to use; temporary/ephemeral)
 Ex: You have 31, 32-bit data registers = 124 Bytes

« RAM: Place for most data (Gigabytes!)

* Program Memory: Possible in RAM or some additional “program memory”



Basic Model

* Machine has small primitive set of “commands” in a few rough categories:

« Data Manipulation: “Computation” (typically uses an ALU)
add tO,t1,t2

 Data Movement: Move data between registers and RAM or initializing values
lw tO, 8(sp)
1i t1,5

* Flow Control: Controlling what instruction happens next (loops, if/else, functions)
beqg tO,tl, done



“Stored Program” Concept

* Assembly instructions can be represented by numbers
» A substitution code: Replace symbols with numbers using pattern

« Convert add t0,tl1,t2 to machine code (32-bit hexadecimal)
(Hint: t0 = x05)

e What about sub t0,t1,t2 ?



Assembly Language Programming
Basic Data Manipulation (ALU)

* (Independent / non-cumulative) Examples: Assuming a in s0, b in s1, etc.
1. a = b+c-d
2. a = bt4
3. a=17

4. a =>b



Function..,

A RD

Instruction
Memory

Instr

Big Picture:

Control
Unit

op

PCSrc
ResultSrc

add t0, t1, t2

MemWrite

ALUControIzz0

14:12

funct3

ALUSrc

30

fu nct7,

Imerct0

Zero
—

| RegWrite

CLK
l

t1 19:15 N WE3 RD

t2 22|
to 17 | as

RD2

WD3 Register

File

g[t1]+reg[t2]

reg[t1]

SrcA

Zero

reg[t2

0 |SrcB

ALUResult

\ao /

reg[t1 ]+r£g [t2]

CLK

ReadData

Result




Loops & Labels: Basic

* Label: Used in assembly language...to label a line of code
* Instructions are in a memory
* They have an index
e Labels turn into a number for that index

« Syntax: identifier:

* Use: Loops, if/else (decisions), functions/methods



Loops & Labels: For-loop

* Label: Used in assembly language...to label a line of code

// add the numbers from O to 9

int sum = 0; // Use s1i

int 1; // Use s0

for (i = 0; i <10; i =1 + 1) {
sum = sum + 1i;

}



Pre-condition Loops: To ASM

* One pattern / template: There are alternatives that sometimes are better in
some sense

// add the numbers from 0 to 9 for (i
initialization .. sum

}

O; 1 <10; 1 =1 + 1) {
sum + 1i;

loop start label:
loop_check / jump to loop_end label

loop body (including increment)
j loop_start label

loop _end label:



Pre-condition Loops: To ASM

* One pattern / template: There are alternatives that sometimes are better in
some sense

// add the numbers from O to 9 while (1 < 10) {
n N sum = sum + i:

TnitaiAalasAa+an
I LI AL T ZAdU T UL e

i =1+ 1
loop start label: }
loop_check / jump to loop_end label

loop body (including increment)
j loop_start label

loop _end label:



Conditionals & Labels: if-statement

// add the numbers from 0 to 9
int sum = 0; // Use s1i
int 1; // Use s0@
for (i = 0; 1 <10; i =1 + 1) {
sum = sum + 1i;
if (i==4) {
print(sum); // ecalls
}
}


https://github.com/kvakil/venus/wiki/Environmental-Calls

Pre-condition if: To ASM

* One pattern / template: There are alternatives that sometimes are better in
some sense
if (i == 4) {
check condition and branch to avoid body N
Y
body

end label:



Data / RAM

* Arrays (in programming languages) are just a representation of a segment of
RAM

 So, RAM works like arrays — index based
 There’s a “base”: The index that it starts at
« However, RAM is an array of BYTES

« Data types like an ‘int" are 4 bytes



Data / RAM

 Assume array named ‘scores starts at address 100. l.e., RAM[100]

 What is the RAM index of scores[1]



Arrays

int 1i; // use sl
int scores[200]; // use sO for the base of scores
for (i = 0; 1 < 200; 1 =1 + 1)

scores[i1] = scores[i] + 10;



Next Time

e Studio



