
CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

This week

• Homework 6A posted tonight

• Gradescope dropbox by Thursday

• Thursday: Won’t need kits

• Will post to Piazza when available Will span week.

Studio 5

https://washu-cse260m-sp25.github.io/studios/studio05

Chapter 5

Review: Register File

• ALU will Need TWO inputs: need a memory structure that provides two
values (I.e. dual output ports)

• The “Register File”

• Also supports writing (updating)
32
32

32

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

Big Picture: add x, y, z

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A

Instr

30

SrcB

ALUResult ReadData

SrcA

14:12

MemWrite

ALUSrc

RegWrite

funct3
funct75

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

ImmSrc1:0

ResultSrc

op6:0

Zero

0
1

Result

19:15

24:20

11:7

Verilog: RISC-V Register File

// 32 x 32 register file with 2 read, 1 write port
module regfile(input logic clk,
 input logic we3,
 input logic [4:0] ra1, ra2, wa3,
 input logic [31:0] wd3,
 output logic [31:0] rd1, rd2);

 logic [31:0] rf[31:0];

 always_ff @(posedge clk)
 if (we3) rf[wa3] <= wd3;

 assign rd1 = rf[ra1];
 assign rd2 = rf[ra2];
endmodule

FPGA
• Field Programmable

• Gate Array

• Lattice iCE40 UP5k: Architecture Overview

• RAMs, (Dual and Single Port)

• Look Up Tables (LUTs): 4 inputs

• D Flip Flops

• Lots: ~5,000

Questions

• Why so many memory types / what are the differences?

• Evolution over time

• Different needs: Capacity vs. Need — the memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

• PLA vs. FPGA

• PLA: (largely) 2-level logic / simple combinational logic

• FPGA: Array of many programmable blocks with programmable
interconnects

• Can efficiently achieve more than 2-layer logic

• Memory/storage is inherent (can do full state machine…see hw 4b)

https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

Chapter 6

Architectures
• “Architecture”: Programmer’s view of CPU

• “Instruction Set Architecture” (ISA):
 Precise details of structure of cpu model, instructions, their
 semantics, and their encoding

• Examples: RISC-V, ARM, MIPS, x86/IA64

• Microarchitecture: How CPU is built to read/do ISA

• Where Digital Logic becomes actual machine!

https://en.wikipedia.org/wiki/Instruction_set_architecture

RISC-V ISA

• “Open Source” ISA

• Book Covers / PDF: https://www.yellkey.com/impact (good for 24 hours)

• Assembly Language

• Machine Language

https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
https://www.yellkey.com/impact

Registers
Name Register Number Usage
zero x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

gp x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporaries

s0/fp x8 Saved register / Frame pointer

s1 x9 Saved register

a0-1 x10-11 Function arguments / return
values

a2-7 x12-17 Function arguments

s2-11 x18-27 Saved registers

t3-6 x28-31 Temporaries

RISC-V Design Criteria
1. Favor regularity (things that are consistent)

 a = b+c => add a,b,c
Subtract? (a=b-c)

• => sub a,b,c

2. Make most used instructions fast (largest impact on performance)

3. Smaller is (usually) faster. Small, efficient memory can be key to performance.
Like…the register file!

4. Can’t do everything well: Compromises are necessary

Basic Model

• Machine is basically 2-3 memories + CPU

• Registers (small, easy to use; temporary/ephemeral)

• Ex: You have 31, 32-bit data registers = 124 Bytes

• RAM: Place for most data (Gigabytes!)

• Program Memory: Possible in RAM or some additional “program memory”

Basic Model

• Machine has small primitive set of “commands” in a few rough categories:

• Data Manipulation: “Computation” (typically uses an ALU)
 add t0,t1,t2

• Data Movement: Move data between registers and RAM or initializing values
 lw t0, 8(sp)
 li t1,5

• Flow Control: Controlling what instruction happens next (loops, if/else, functions)
 beq t0,t1, done

“Stored Program” Concept

• Assembly instructions can be represented by numbers

• A substitution code: Replace symbols with numbers using pattern

• Convert add t0,t1,t2 to machine code (32-bit hexadecimal)
(Hint: t0 = x05)

• What about sub t0,t1,t2 ?

Assembly Language Programming 
Basic Data Manipulation (ALU)

• (Independent / non-cumulative) Examples: Assuming a in s0, b in s1, etc.

1. a = b+c-d

2. a = b+4

3. a = 7

4. a = b

Big Picture: add t0, t1, t2

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A

Instr

30

SrcB

ALUResult ReadData

SrcA

14:12

MemWrite

ALUSrc

RegWrite

funct3
funct75

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

ImmSrc1:0

ResultSrc

op6:0

Zero

0
1

Result

19:15

24:20

11:7

t1
t2
t0

reg[t1]
reg[t2]

Function… +

reg[t1]+reg[t2]

reg[t1]+reg[t2]

Loops & Labels: Basic
• Label: Used in assembly language…to label a line of code

• Instructions are in a memory

• They have an index

• Labels turn into a number for that index

• Syntax: identifier:

• Use: Loops, if/else (decisions), functions/methods

Loops & Labels: For-loop

• Label: Used in assembly language…to label a line of code

//. // add the numbers from 0 to 9
 int sum = 0; // Use s1
 int i; // Use s0
 for (i = 0; i < 10; i = i + 1) {
 sum = sum + i;
 }

Pre-condition Loops: To ASM
• One pattern / template: There are alternatives that sometimes are better in

some sense

 // add the numbers from 0 to 9

 initialization …

loop_start_label:
 loop_check / jump to loop_end_label

 loop body (including increment)
 j loop_start_label

loop_end_label:

 for (i = 0; i < 10; i = i + 1) {
 sum = sum + i;
 }

Pre-condition Loops: To ASM
• One pattern / template: There are alternatives that sometimes are better in

some sense

 // add the numbers from 0 to 9

 initialization …

loop_start_label:
 loop_check / jump to loop_end_label

 loop body (including increment)
 j loop_start_label

loop_end_label:

 while (i < 10) {
 sum = sum + i;
 i = i + 1
 }

Conditionals & Labels: if-statement

//. // add the numbers from 0 to 9
 int sum = 0; // Use s1
 int i; // Use s0
 for (i = 0; i < 10; i = i + 1) {
 sum = sum + i;
 if (i==4) {
 print(sum); // ecalls
 }
 }

https://github.com/kvakil/venus/wiki/Environmental-Calls

Pre-condition if: To ASM

• One pattern / template: There are alternatives that sometimes are better in
some sense

 check condition and branch to avoid body

 body

end_label:

 if (i == 4) {
 …
 }

Data / RAM

• Arrays (in programming languages) are just a representation of a segment of
RAM

• So, RAM works like arrays — index based

• There’s a “base”: The index that it starts at

• However, RAM is an array of BYTES

• Data types like an `int` are 4 bytes

Data / RAM

• Assume array named `scores` starts at address 100. I.e., RAM[100]

• What is the RAM index of scores[1]

Arrays

int i; // use s1
int scores[200]; // use s0 for the base of scores
for (i = 0; i < 200; i = i + 1)
 scores[i] = scores[i] + 10;

Next Time

• Studio

