CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

This week

e Homework 6A posted tonight
» Gradescope dropbox by Thursday

 Thursday: Won’t need kits

e WIll post to Piazza when available Will span week.

Studio 5

https://washu-cse260m-sp25.github.io/studios/studio05

Chapter 5

Review: Register File

 ALU will Need TWO inputs: need a memory structure that provides two
values (l.e. dual output ports)

* The “Register File”

e Also supports writing (updating)

Register
WD3 File

Big Picture: add x, y, z

CLK ‘
WE3
A1 RD1 Zero

ALUResiI

A2 RD2

A3

Register
WD3 " File

Verilog: RISC-V Register File

// 32 x 32 register Tfi1e i

module regfile (input ECTEEs
input logre
input loodd
input logrie
output legie

logic [31:0] &[] " i

always If W(poccdge ol B
if (we3) rflwas|] —— wd :

assign gl = rhilegl |
a1 rd’ — BElea i
enamoduale

clk,
we3,
ral,
wad 3,
rdl,

RE

rel’)

i Wiite port

wa3s,

FPGA

e Field Programmable
« Gate Array

» [attice iCE40 UP5k: Architecture Overview

RAMs, (Dual and Single Port)

Look Up Tables (LUTSs): 4 inputs

D Flip Flops

Mo} CCHEISH 0 0]0

Questions

 Why so many memory types / what are the differences?

e Evolution over time

e Different needs: Capacity vs. Need — the memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

 PLA vs. FPGA

 PLA: (largely) 2-level logic / simple combinational logic

« FPGA: Array of many programmable blocks with programmable
Interconnects

« Can efficiently achieve more than 2-layer logic

« Memory/storage is inherent (can do full state machine...see hw 4b)

https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

Chapter 6

Architectures

* “Architecture”: Programmer’s view of CPU

» “Instruction Set Architecture” (ISA):
Precise details of structure of cpu model, instructions, their
semantics, and their encoding
« Examples: RISC-V, ARM, MIPS, x86/I1A64

* Microarchitecture: How CPU is built to read/do ISA

* Where Digital Logic becomes actual machine!

https://en.wikipedia.org/wiki/Instruction_set_architecture

RISC-V ISA

* “Open Source” ISA

 Book Covers / PDEF: https://www.yellkey.com/impact (good for 24 hours)

e Assembly Language

 Machine Language

https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
https://www.yellkey.com/impact

Registers

Name Register Number|Usage

zero x0 Constant value O

ra x1 Return address

sp X2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporaries

s0/fp x8 Saved register / Frame pointer

s X9 Saved register

a0-1 x10-11 Function arguments / return
values

a2-7 x12-17 Function arguments

s2-11 x18-27 Saved registers

t3-6 x28-31 Temporaries

RISC-V Design Criteria

1. Favor regularity (things that are consistent)
a=b+c => add a,b,c
Subtract? (a=b-c)
0 == Sy @l e

2. Make most used instructions fast (largest impact on performance)

3. Smaller is (usually) faster. Small, efficient memory can be key to performance.
Like...the register file!

4. Can’t do everything well: Compromises are necessary

Basic Model

 Machine is basically 2-3 memories + CPU
* Registers (small, easy to use; temporary/ephemeral)
 Ex: You have 31, 32-bit data registers = 124 Bytes

e RAM: Place for most data (Gigabytes!)

 Program Memory: Possible in RAM or some additional “program memory”

Basic Model

 Machine has small primitive set of “commands” in a few rough categories:

e Data Manipulation: “Computation” (typically uses an ALU)
siekel @, el it

« Data Movement: Move data between registers and RAM or initializing values
lw tO, 8(sp)
Iy el S

 Flow Control: Controlling what instruction happens next (loops, if/else, functions)
el 0, £l Clene

“Stored Program” Concept

 Assembly instructions can be represented by numbers
* A substitution code: Replace symbols with numbers using pattern

« Convert add t0,tl,t2 to machine code (32-bit hexadecimal)
(Hint: t0 = x05)

e What about sub t0,t1,t2 ?

Assembly Language Programming
Basic Data Manipulation (ALU)

* (Independent / non-cumulative) Examples: Assuming a in s0, b in s1, etc.

L. £ B loire-@

2. a = b4
3: a —
4. a = Db

Big Picture: add tO, ti, t2

PCSrc

Control ResultSrc

Unit

Function... Memie

op ALUControl,,

funct3 |ALUSrc
funct75 |merC1:0

” Zero | RegWrite

14:12

30

____/

Cll_K

WE3
A1 RD1 Zero

A RD ALUResult i ReadData
Instruction

Memory B A2 RD2 reg[t1]+reg[t2]
. A3

Register
WD3 "File

Loops & Labels: Basic

e Label: Used in assembly language...to label a line of code
 Instructions are in a memory
* They have an index
e Labels turn into a number for that index

e Syntax: identifier:

 Use: Loops, if/else (decisions), functions/methods

Loops & Labels: For-loop

e Label: Used in assembly language...to label a line of code

// add the numbers from O to 9

int sum = 0; // Use sl

nt 1 // Use s0

for (1 = 0: i < 16; | = | il
sum = sum + 1;

}

Pre-condition Loops: To ASM

* One pattern / template: There are alternatives that sometimes are better in
some sense

// add the numbers from 0 to 9 for (i
initialization sum

}

g g < 10: 1
slm + 1

i = 1y {

loop start label:
loop _check / jump to loop_end label

loop body (including increment)
j loop_start label

loop _end label:

Pre-condition Loops: To ASM

* One pattern / template: There are alternatives that sometimes are better in
some sense

// add the numbers from O to 9 gite (1 < 10) {

iritiatzation . sum = sum + 1;
]

loop start label: }
loop _check / jump to loop_end label

loop body (including increment)
j loop_start label

loop _end label:

Conditionals & Labels: if-statement

// add the numbers from O to 9
int sum = 0; // Use sl
TnE 1 // Use s0
for (i = 0; 1 < 18] = |
sum = sum + 1i;
if (i==4) {
print(sum); [/ €call=

}
}

https://github.com/kvakil/venus/wiki/Environmental-Calls

Pre-condition if: To ASM

 One pattern / template: There are alternatives that sometimes are better in
some sense
i) 1
check condition and branch to avoid body .
Y
body

end label:

Data / RAM

* Arrays (in programming languages) are just a representation of a segment of
RAM

 So, RAM works like arrays — index based
* There’s a “base”: The index that it starts at

« However, RAM is an array of BYTES

e Data types like an ‘int" are 4 bytes

Data / RAM

 Assume array hamed scores starts at address 100. l.e., RAM[100]

 What is the RAM index of scores|[1]

int 1.
int scores[200];

Arrays

// use sl
// use sO@ for the base of scores

for (i = 0; 1 < 260 | = 1 1
scores[1] = scoresji] t 10

Next Time

e Studio

