
CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

This week

• Hw#4B due Wednesday

• In-person demo required for full credit!

• Hw#5A posted tonight / due Sunday

• A little shorter

• In-person demo likely

RISC-V Edition of book!
RISC-V in the news…

https://www.tomshardware.com/pc-components/gpus/startup-claims-its-zeus-gpu-is-10x-faster-than-nvidias-rtx-5090-bolts-first-gpu-coming-in-2026

Studio 4B Review & Ch 5

Studio 4B

• Full-Adder: Behavioral variations in simulation

• iCE40 Mapping

• Full-Adder: Column of number

Ripple Adder

• Example: 1111 + 0001

• As a traditional math problem:

 1 1 1 1
 + 0 0 0 1
 ——————

Info in circuit

• As values in a circuit:

 0 0 0 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

Info in circuit: Initial

• As values in a circuit:

 0 0 0 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

Info in circuit: After 1st “Sum” update

• As values in a circuit:

 0 0 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 1 1 0 <= “Sum"

Info in circuit: After 2nd “Sum” update

• As values in a circuit:

 0 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 1 0 0 <= “Sum"

Info in circuit: After 3rd “Sum” update

• As values in a circuit:

 1 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 0 0 0 <= “Sum"

Info in circuit: After 3rd “Sum” update

• As values in a circuit:

 1 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

JLS Example: 1111+0001

Ripple Adder: Total Time

• bits: Worst case scenario is ripple through all

• If is the propagation delay through the Carry
=

• Dictates things like maximum clock cycle for any paths/loops that use
addition

• Lots of things rely on addition!

N N

Tc
N ⋅ Tc

Wikipedia Animation

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:RippleCarry2.gif

Studio 4B: Structural Ripple-Carry Adder
(And Generate Statement) 

(And Hardware)

Studio 4B: State Machines

Verilog FSMs

• Three parts

• Next state logic
(arrows / next state table)

• State register (active bubble)

• Output logic (output equations)

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Divide by 3 Counter

S0

S1

S2

Verilog
module divideby3FSM(input logic clk,
 input logic reset,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype state, nextstate;

 // state register
 always_ff @(posedge clk, posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 // next state logic
 always_comb
 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 default: nextstate = S0;
 endcase

 // output logic
 assign q = (state == S0);
endmodule

S0

S1

S2

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

Chapter 5
Goal…and pattern…

https://en.wikipedia.org/wiki/ENIAC

X = Y + Z 
(Using variables)

+

X = Y - Z 
(Using variables)

-

X = Y < Z 
(Using variables)

<

X = Y & Z 
(Using variables)

&

Better (faster) Addition

Carry Look-Ahead

• Divide large addition into -bit blocks

• Within each block, determine if what each column would with a carry-in to
the column

• Would it “Generate” a carry? ()

• Would it merely “Propagate” the carry? ()

• Can the carry-out be represented in terms of , , , and ?

n

gx

px

ax bx cinx gx px

 ? <= Carry in
 a <= “A”
 + b <= “B”
 ——
 s <= “Sum"

Building a Block (of 4)

Extend “prediction” to block

Pblock = P3 ⋅ P2 ⋅ P1 ⋅ P0

Gblock = G3 + P3 ⋅ (G2 + (P2 ⋅ (P1 ⋅ G0)))

Block “Prediction”

Ripple in 4 block, 16-bit CLA

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

Trade off: Logic vs. Time
• CLA and other tricks (Prefix adder) add logic to reduce time

• Degenerate Case: A look-up table (full sum-of-products equation)

• How many layers of logic? (nots, ands, ors)?

• To estimate complexity, how many rows and output columns are in a table to add
two, 8-bit numbers?

• Approximately how many AND gates?
Approximately how many OR gates?
Estimate the number of inputs that may be needed on OR gates

Subtraction

• The beauty of 2’s complement

• A − B = A + B + 1

Subtraction

• The beauty of 2’s complement

• A − B = A+B + 1

Comparisons

• Equality

• Easy: Are any bits different?

• Equal to zero?

• ?

• Less than (signed): Is A<B?

• Leverage Subtraction: A<B is equivalent to A-B<0

• Subtract and check result

• General: Is A-B negative?

• But…large numbers can “overflow”.
Need to consider overflow and signs of A & B

Comparisons

ALU: Arithmetic Logic Unit
• “Heart” of CPU: Does the computation stuff.

• Basic operations

• Addition

• Subtraction

• Bitwise AND

• Bitwise OR

• Comparison (<)

ALU: Arithmetic Logic Unit
• “Heart” of CPU: Does the computation stuff.

• Basic operations

• Addition: 000

• Subtraction: 001

• Bitwise AND: 010

• Bitwise OR: 011

• Comparison (<): 101

Other Operations: Shift Left (one place)

•

•

25 + 24 + 22 + 21 = 54

26 + 25 + 23 + 22 = 108

Value 0 0 1 1 0 1 1 0

Place
Value 27 26 25 24 23 22 21 20

Value 0 1 1 0 1 1 0 0

Place
Value 27 26 25 24 23 22 21 20

Shifting (unsigned / width)∞
• Left bits: Equivalent to multiplication by

• Multiplication algorithm is a mix of addition and multiplication by

• Ex:

• Ex:

• Right bits: Equivalent to division by and truncation

n 2n

bk

123 × 12

10112 × 112

n 2n

Memory

Memory / Storage

• Common types

• Static Random Access Memory (SRAM)

• Dynamic Random Access Memory

• Read Only Memory (contents can’t be easily changed)

Memory / Storage

• General Approach

• Store in a 2D grid of elements

• Call each row a “word”

• Each row has an index to access the content of the entire row

• One approach

• Bits are “enabled” to connect
to shared output line

Memory Structure

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

Memory / Storage

• Concept: Computer programming

• An Array (List) is a representation of memory

• “Random” : Largely about time to access

• The “random” means the location doesn’t have much impact on access
time

• Vs. “Sequential”

• One approach

• Bits are “enabled” to connect
to shared output line

Memory Structure

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

A Sequential Example

https://en.wikipedia.org/wiki/Reel-to-reel_audio_tape_recording

RAM: SRAM vs. DRAM

https://www.youtube.com/watch?v=0rNEtAz3wJQ

SRAM vs. DRAM

• S = “Static”/Unchanging (well, only changing when requested!)

• Could be built from D Flip Flops (but similar “self-reinforcing” circuits more likely)

• D = Dynamic: Values fade if not refreshed

• RAM: “Random Access”

• About performance of reading/updating

• Time take (propagation delay) does not depend on index requested

ROM

• Read Only

• But still “Random Access” performance

• Fixed look-up table. Could be built with combinational logic!

• Earlier example of “adder” could just be a ROM

• M = Word size

• N = “address size”

• How many total bits are stored?

Reading Memory

Address

Data

ArrayN

M

ALU Operations
• Context: X=Y+Z

• We need places to hold Y, Z, and X.

• Need TWO inputs:

• need a memory structure that provides 2 values
(I.e. dual output ports)

• The “Register File”

• Also supports writing (updating)

32
32

32

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

JLS Register File 
(W/ D Flip Flops)

Verilog: RISC-V Register File

// 32 x 32 register file with 2 read, 1 write port
module regfile(input logic clk,
 input logic we3,
 input logic [4:0] ra1, ra2, wa3,
 input logic [31:0] wd3,
 output logic [31:0] rd1, rd2);

 logic [31:0] rf[31:0];

 always_ff @(posedge clk)
 if (we3) rf[wa3] <= wd3;

 assign rd1 = rf[ra1];
 assign rd2 = rf[ra2];
endmodule

Big Picture: add x, y, z

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A

Instr

30

SrcB

ALUResult ReadData

SrcA

14:12

MemWrite

ALUSrc

RegWrite

funct3
funct75

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

ImmSrc1:0

ResultSrc

op6:0

Zero

0
1

Result

19:15

24:20

11:7

FPGA
• Field Programmable

• Gate Array

• Lattice iCE40 UP5k: Architecture Overview

• RAMs, (Dual and Single Port)

• Look Up Tables (LUTs): 4 inputs

• D Flip Flops

• Lots: ~5,000

Questions

• Chapter fits well with 361S

• Wait until next chapter…

• Why so many memory types / what are the differences?

• Evolution over time

• Different needs: Capacity vs. Need — the memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

• PLA vs. FPGA

• PLA: (largely) 2-level logic / simple combinational logic

• FPGA: Array of many programmable blocks with programmable
interconnects

• Can efficiently achieve more than 2-layer logic

• Memory/storage is inherent (can do full state machine…see hw 4b)

https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

