CSE 260M / ESE 260 Intro. To Digital Logic & Computer Design

Bill Siever & Michael Hall

Homework 2

- Posted
 - Due Sunday at 11:59pm
 - Includes JLS part
 - Gradescope dropboxes will be available by Thursday

Review

Last Time

- Binary
- *Unsigned* Integers: Extension of Place-value notation used in decimal
 - Fixed width Binary (e.g., 3-bit; 4-bit; 32-bit) forms a modular ring
 - Addition rules are simple
- 2's Complement

Quiz(ish)

- Consider 5-digit integers
 - Decimal: Max value? (I.e., highest decimal number that can be represented)
 - Binary: Max value? (I.e., highest binary number that can be represented)

Behavior OVER TIME

- · Gate represents a machine of some sort machine
 - in the real world
- They are not instantaneous
 - Real-world outputs and inputs need to be well behaved (noise margin)

Chapter 2: Combinational Logic

1. Intro.

- 2. Boolean Equations
- 3. Boolean Algebra
- 4. From Logic to Gates

2.1 Intro: Combinational Logic

- (Purely) Combine inputs to produce outputs
 - Output depends *only* on current input, not past inputs
- Behavior of all combinational logic can be described with a table

Binary Addition Rules: Fully Elaborated

0+ 0+ 0	=	00
0+ 0+ 1	=	01
0+ 1+ 0	=	01
0+ 1+ 1	=	10
1+ 0+ 0	=	01
1+ 0+ 1	=	10
1+ 1+ 0	=	10

Binary Addition Rules: Inputs

Carry	/ A	В		Sum
0+	0+	0	=	00
0+	0+	1	=	01
0+	1+	0	=	01
0+	1+	1	=	10
1+	0+	0	=	01
1+	0+	1	=	10
1+	1+	0	=	10
1+	1+	1	=	11

Binary Addition Rules: & Outputs

Carry In A		В		Carry Out	Sum
0+	0+	0	=	0	0
0+	0+	1	=	0	1
0+	1+	0	=	0	1
0+	1+	1	=	1	0
1+	0+	0	=	0	1
1+	0+	1	=	1	0
1+	1+	0	=	1	0
1+	1+	1	=	1	1

"Tables"

- Consider a function that has *n* inputs and *m*, 1-bit outputs
 Describe the shape / size of the complete table?
- Consider a function that has *m* inputs and 2, 3-bit output Describe the shape / size of the complete table?

Truth Tables

• Give the truth table for

Truth Tables

• Give the truth table for

2.2 Boolean Equations - History

- George: Mathematical Analysis of Logic
- Formal, algebraic approach to manipulation of binary concepts
- So?
 - Provide formal approach to manipulate concepts

2.4 Gates

- Not just electronics:
 - Scientific American, Vol. 258, No. 4 (APRIL 1988), pp. 118-121 (4 pages)
- Claude: Thesis

Boolean Algebra

Table 2.1 Axioms of Boolean algebra

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1'	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Boolean Algebra

Table 2.2 Boolean theorems of one variable

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Boolean Algebra

Table 2.3 Boolean theorems of several variables

	Theorem		Dual	Name
Т6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C) + D = B + (C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$ \begin{aligned} (B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) \\ = (B \bullet C) + (\overline{B} \bullet D) \end{aligned} $	T11′	$\begin{array}{l} (B+C) \bullet (\overline{B}+D) \bullet (C+D) \\ = (B+C) \bullet (\overline{B}+D) \end{array}$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots)$	T12′	$\overline{B_0 + B_1 + B_2 \dots} = (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots)$	De Morgan's Theorem

Compare / Contrast

Combinational Logic vs. Sequential Logic

- Output of Sequential Logic
 - Depends on current inputs and sequence of past inputs (values and order)
 - Requires concept of memory

Demos of Circuits in JLS

- Overview of parts / ideas
 - Equation: D = A*B*C
 - Realization A & Testing
 - Realization B B & Testing
 - Bubble Pushing
 - DeMorgan's Laws?

Timing & Simulation

Next Time

- Studio
 - Prep work will be posted
 - Install JLS
 - Check Email for attendance code