
CSE 260M / ESE 260 
Intro. To Digital Logic & Computer Design

Bill Siever 
&  

Michael Hall



Announcements

• Office hours:  Starting today. See “help” page in Canvas or course site  

• Homework 2B Posted / Due Sunday at 11:59pm  

• Dropboxes posted Thursday 

• Lab kits: Handed out either this Thurs or next 

• Fee: $65 will be applied to student accounts in next ~2 weeks

https://washu-cse260m-sp25.github.io/


Studio 2A Highlights

• Unsigned number line 

• Two’s complement



Last Time

• Studio:  Binary Number Lines Extended

Binary:
Decimal:   0          1           2           3           4           5           6           7 

000      001       010       011       100       101       110       111



Last Time

• Studio:  Binary Number Lines Extended

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
000      001       010       011       100       101       110       111

  8          9          10          11         12        13          14         15 
000      001       010       011       100       101       110       111



Last Time

• Studio:  Binary Number Lines Extended

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

   8          9          10          11         12        13          14         15 
1000    1001    1010       1011      1100   1101      1110     1111



Last Time

• Studio:  Binary Number Lines Extended

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

   8          9          10        11         12        13          14         15 
1000    1001    1010     1011      1100   1101      1110     1111



Last Time

• Studio:  Two’s Complement

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

 -8         -7          -6         -5          -4         -3          -2         -1 
1000    1001    1010       1011    1100    1101      1110     1111



Last Time

• Studio:  Two’s Complement

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

 -8         -7          -6         -5          -4         -3          -2         -1 
1000    1001    1010       1011    1100    1101      1110     1111



Last Time

• Studio:  Two’s Complement - Above/Below

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

 -8         -7          -6         -5          -4         -3          -2         -1 
1000    1001    1010       1011    1100    1101      1110     1111



Last Time

• Studio:  Two’s Complement - Above/Below & Bitwise Inversion

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( )−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( 6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( 6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( 6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( -6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( -6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( -6)−1 ×

Binary:
Decimal:

  0          1           2           3           4           5           6           7 
0000    0001    0010      0011    0100      0101    0110     0111

1111    1110    1101       1100    1011    1010      1001     1000 
 -1           -2        -3            -4         -5        -6          -7          -8Decimal:

Binary:



Last Time

• Studio:  Two’s Complement - Mathematical Negation ( A) 

• Logic:   

• We are assumed to have “machines” for both; 

• Bitwise inversion (  invertors) and -bit addition  
(more to come on -bit addition)

−1 ×

Ā + 1

n n
n



Last Time

• Assume an  bit adder, like: 
 

•  bit subtractor can be built:

n

n



Last Time: Tee

•  

• Theorem / Dual T5’:  

• Therefore “1” 

• Eventually… JLS

tb + tb

B + B = 1



Last Time

• JLS Logic Types: Unsigned & Assumes values are 0 at t = 0



Chapter 2

• Tables & Sum-of-products 

• A “can’t go wrong” way to build logic that behaves a specified way 

• Karnaugh Maps: A form of optimization



Background: Minterms

• Minterms:  Given  variables, a product (AND) containing all  exactly once, 
in either their original or negated form 

• Consider:   
Identify all possible combinations of inputs which make it true:

n n

A ⋅ B ⋅ C ⋅ D



Chapter 2: Minterms

• Consider  and ;  Which are Minterms?  Which are not and why? 

•   

•  

•  

•

n = 3 A, B, C

ABC

ABĀ

CBĀ

ĀC



Minterms & Truth Tables
CI A B Carry Out Sum

0+ 0+ 0 = 0 0

0+ 0+ 1 = 0 1

0+ 1+ 0 = 0 1

0+ 1+ 1 = 1 0

1+ 0+ 0 = 0 1

1+ 0+ 1 = 1 0

1+ 1+ 0 = 1 0

1+ 1+ 1 = 1 1



Minterms & Truth Tables
CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1



Minterms & Truth Tables
CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

• :    

• Where/when is each of these true? 

•  

•  

•  

•

n = 3 CI, A, B

C̄I ⋅ Ā ⋅ B

C̄I ⋅ A ⋅ B̄

CI ⋅ Ā ⋅ B̄

CI ⋅ A ⋅ B



Minterms & Truth Tables

• Minterms are true for a single combination of inputs 

• This is essentially selecting a row of a truth table



Minterms & Truth Tables
CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

• :    

• Where/when is Sum true (any 
place)?

n = 3 CI, A, B



Sum = C̄I ⋅ Ā ⋅ B+

Minterms & Truth Tables
CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

• :    

• Where/when is any of these 
true?

n = 3 CI, A, B

Sum =
C̄I ⋅ A ⋅ B̄+
CI ⋅ Ā ⋅ B̄+
CI ⋅ A ⋅ B

Truth Table -> Sum of Minterms
Canonical Form

https://en.wikipedia.org/wiki/Canonical_form


Important!
• Any simple function (mapping) can be represented as a truth table 

• -bit binary numbers can be used to represent all the inputs  

• The table will need  rows to represent all the possible combinations of inputs 

• -bit binary numbers can represent the output(s) 

• Each of the  bits of output can be represent by a sum-of-products (sum of minterms) equation.  

• There’s a minterm for each place the bit of  is a 1 (true)  

• Canonical form = The “sum” of these Minterms

n

2n

m

m

m



Sum-of-Products

• All our combinational logic could be represented in a table 

• All the outputs can be represented as equations 

• Those equations can be realized with just the concept of AND, OR, & NOT 

• I.e., we can build computing machines for anything we can represent in a 
table if we have AND, OR, or NOT.  

• The idea of Tables and “Look Up Tables” (LUTs) is really useful!



Give an SOP equation for…
Inputs Output

A B C O
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



Give an SOP equation for…
Inputs Output

S D1 D0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1



Give an SOP equation for…
Inputs Output

Sel I1 I0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

https://commons.wikimedia.org/wiki/File:Multiplexer2.svg



Product-Of-Sums
• Alternative to SOP:  Uses maxterms (SUM of all input variables) in large product 

• Form:   

• Can be constructed from table by focusing on: 
   1) rows with zeros  
and  
   2) sums that will be zeros in only those rows 

• Sum-of-Prod: Smaller when more 1s than 0s in table;   
Otherwise Prod-of-Sums is smaller 

• This class: slightly focused on Look-up Table (LUT) concept / usually favor SOP

Y = (A + B + C) ⋅ (A + B + C)⋯



Real Circuits: Xs and Zs

• 0s and 1s represent real-world, continuous values, like voltages 

• Ex: 0 = 0v (gnd);   1 = 5v 

• What’s 2.3v?  

• What happens if a 0v wire is connected to 5v wire? 
(“Contention”) 

• X: That’s illegal / don’t know



Simulator / Language Types
• Bits & Types:  10101100 can have different interpretations 

• Programming languages use data types 

• Verilog (Chapter 4)’s logic type:  

• 0, 1, X (unknown), Z (high-impedance) 

• Other simulators often use X for initial value 
(Helps catch errors and misunderstandings earlier vs. building on a bad 
assumption!)



Real Circuits: Xs and Zs
• 0s and 1s represent real-world, continuous values, like voltages 

• Ex: 0 = 0v (gnd);   1 = 5v (relative to that ground) 

• Voltage is a relative measure  
(like water pressure: it’s the difference between two points) 

• Z: “Floating” value / disconnected 

• Sometimes useful to “disconnect” something to prevent contention  
(to share wires with different things in control at different times) 

• Sometimes an error when nothing is connected 
(Behavior depends on technology and conditions;  Can be random or influenced by external things — 
like moving a hand near a circuit!)



Circuit “Optimization”

• Time or performance? 

• Number of parts? 

• Total cost? 

• Combination:  E.g., Cheapest way to achieve a specific level of performance



Circuit “Optimization”
• Logic Minimization 

• Canonical Form is seldom the minimum number of parts 

• Can “combine” overlapping terms (implicants / product) 

• Prime Implicant: Can’t be further reduced 

• Ex:  

• True when .  The  and  cancel

A ⋅ B ⋅ C + A ⋅ B ⋅ C

A ⋅ C B B

https://en.wikipedia.org/wiki/Implicant


Karnaugh (K) Maps

• A visual way to do term optimization 

• Rely on tables that allow easy identification of ways to combine implicants 

• Uses Gray code ordering, not counting order!!! 

• Only useful for up to 4 variables.  I.e., small problems



Karnaugh (K) Maps

• Goal:  Cover all 1s with circles 

• As few circles as possible & as large as possible 

• Span rectangles with sides of 1, 2, 4, or 8 

• Top/bottom and left/right wrap! 



Give an opt. equation for…
Inputs Output

S D1 D0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

D1/D0

00 ?? ?? ??

S

0

1



Give an opt. equation for…
Inputs Output

S D1 D0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

D1/D0

00 01 11 10

S

0

1



Give an opt. equation for…
Inputs Output

S D1 D0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

D1 D0

00 01 11 10

S

0 0 1 1 0

1 0 0 1 1

D1 changes

D0 changes



Give an opt. equation for…
Inputs Output

S D1 D0 O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

D1 D0

00 01 11 10

S

0 0 1 1 0

1 0 0 1 1

S ⋅ D0

S ⋅ D1



E2: Give an opt. equation for…
Inputs Output

A B C O
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

B/C

00 01 11 10

A

0

1



E3: Give an equation for…
Inputs Output

X Y Z O
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

X/Z

00 01 11 10

X

0

1



2.8: More Parts

• Q:  We want a 4-to-1 multiplexor.  How big is the full truth table? 

• Q: Our CPU may need a 32-to-1 multiplexor.  How big is the truth table? 

• We need a new approach 

• Hierarchical construction



Questions
• Glitches:  Partly a result of different path lengths through a circuit 

• An analogy of one type of glitch via different paths 

• Runner Red & Blue both are going to Brookings.   

• They both leave Hillman 70 at the same time 

• They both run about the same speed 

• The each have have a dye to dump in the the fountain (which is initially clean water) 

• Red runs directly to Brookings.  Blue goes by Siegle hall (far end of campus) first 

• Describe what happens to the color of the water? 



Questions
• Real-world implications of propagation delay 

• CPU Clock speed is based on the propagation delay 

• Less delay can lead to faster clock speeds and faster programs 

• Floating values (covered) 

• Multiplexors vs. Encoders vs. Demux vs. Decoder:  More on Encoders and Decoders later 

• Encoders and Decoders are about encoding or decoding binary numbers 

• Multiplexors are about “picking” an input of interest.  They are a vital part of the data path of CPUs.  

• Circuit diagrams get messy as they get bigger. Is there a better way? 

• Hierarchical design (Chapter 3-6)



Questions

• How do I understand K-maps?   

• Practice & review 

• What about more than 4 variables: 

• Quine–McCluskey algorithm 

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm


Hierarchical Approach

• We’ve created a 2-to-1 MUX 

• Construct a 4-to-1 MUX using 2-to-1 MUXes 

• Focus on desired behavior using existing parts



4-to-1 MUX Behavior

• Behavioral Description as a Table Inputs of Interest Output 
(In terms of Inputs)

S1 S0 O

0 0 I0

0 1 I1

1 0 I2

1 1 I3



Hierarchical Construction of 4-input 
Mix



Review / Catchup
• SOP equations 

• Table to describe behavior 

• Product equation for “matching” exact pattern  

• Sum of Products for full, single-bit behavior 

• Overall circuit structure 

• Pros: Can’t go wrong!  Can build any machine….Can be messy though. 

• Product of sums:  Apply DeMorgan’s law or focus on 0s and construct


