CSE 260M / ESE 260 Intro. To Digital Logic & Computer Design

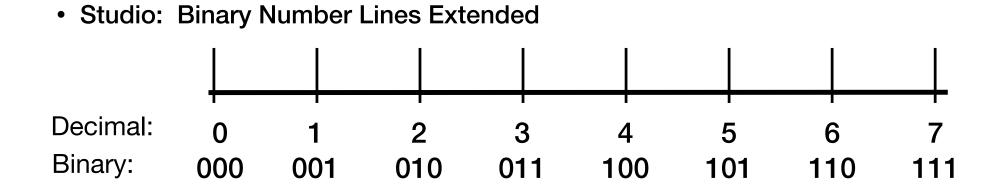
Bill Siever & Michael Hall

Announcements

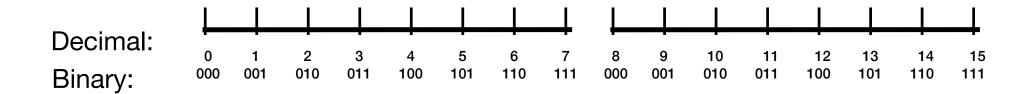
- Office hours: Starting today. See "help" page in Canvas or course site
- Homework 2B Posted / Due Sunday at 11:59pm
 - Dropboxes posted Thursday
- Lab kits: Handed out either this Thurs or next
 - Fee: \$65 will be applied to student accounts in next ~2 weeks

Studio 2A Highlights

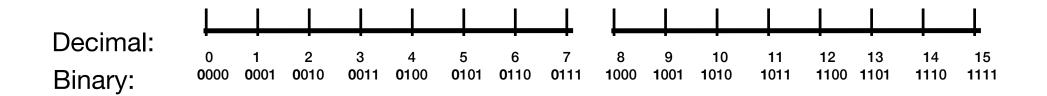
- Unsigned number line
- Two's complement



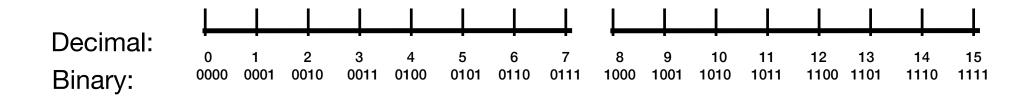
• Studio: Binary Number Lines Extended



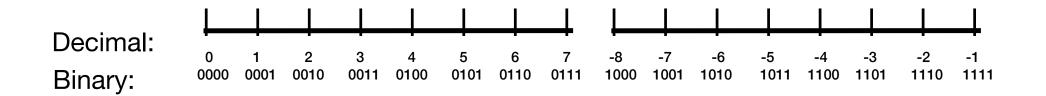
• Studio: Binary Number Lines Extended



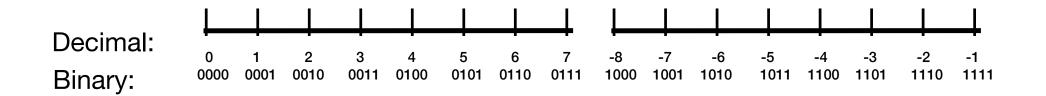
• Studio: Binary Number Lines Extended



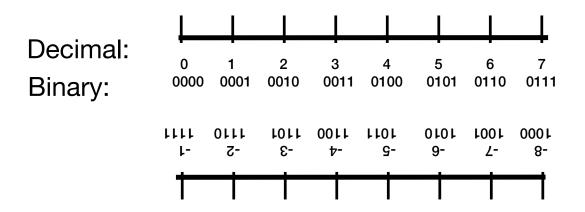
• Studio: Two's Complement



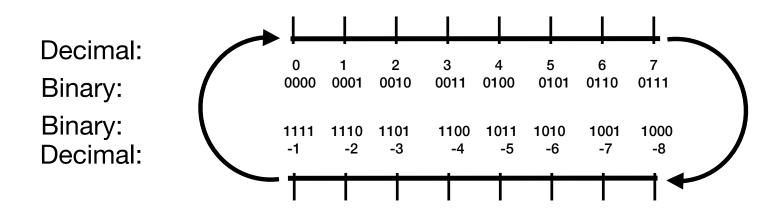
• Studio: Two's Complement



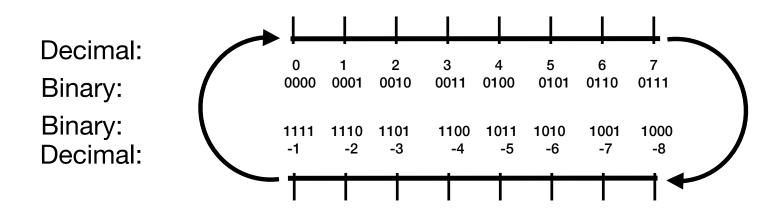
• Studio: Two's Complement - Above/Below



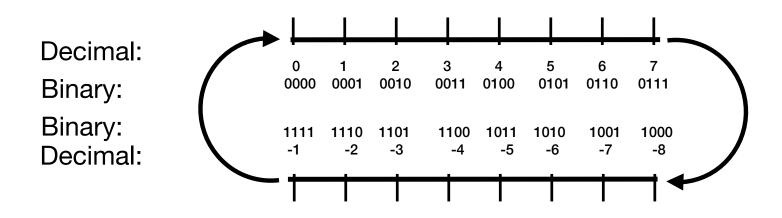
• Studio: Two's Complement - Above/Below & Bitwise Inversion



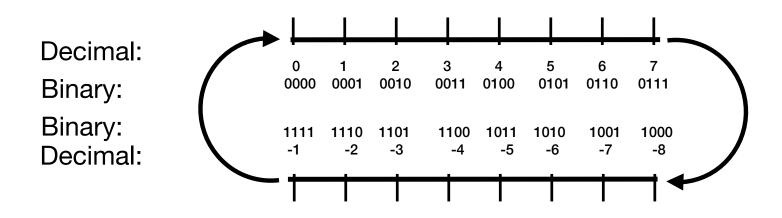
• Studio: Two's Complement - Mathematical Negation ($=1 \times$)



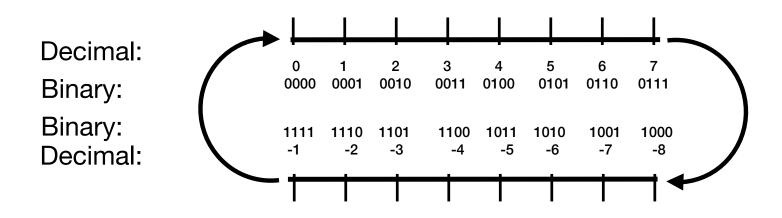
• Studio: Two's Complement - Mathematical Negation ($=1 \times 6$)



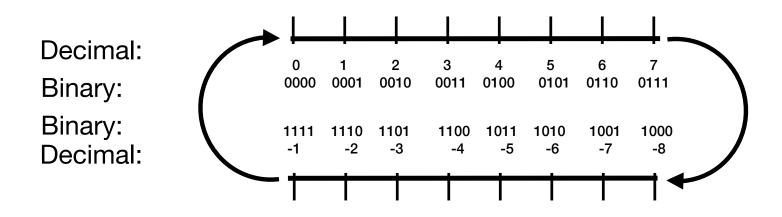
• Studio: Two's Complement - Mathematical Negation ($=1 \times 6$)



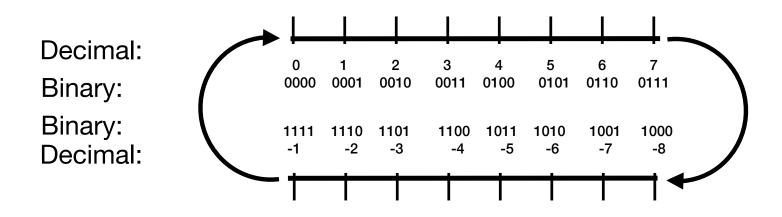
• Studio: Two's Complement - Mathematical Negation ($=1 \times 6$)



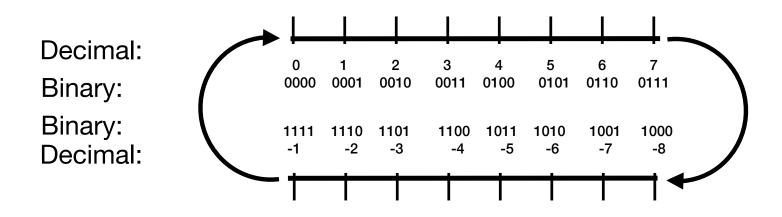
• Studio: Two's Complement - Mathematical Negation ($=1 \times -6$)



• Studio: Two's Complement - Mathematical Negation ($=1 \times -6$)



• Studio: Two's Complement - Mathematical Negation ($=1 \times -6$)



- Studio: Two's Complement Mathematical Negation ($=1 \times A$)
- Logic: $\overline{A} \neq 1$
 - We are assumed to have "machines" for both;
 - Bitwise inversion (*m* invertors) and *m*-bit addition (more to come on *m*-bit addition)

• Assume an *n* bit adder, like:

• *m* bit subtractor can be built:

Last Time: Tee

• JLS Logic Types: Unsigned & Assumes values are 0 at t = 0

Chapter 2

- Tables & Sum-of-products
 - A "can't go wrong" way to build logic that behaves a specified way
- Karnaugh Maps: A form of optimization

Background: Minterms

- Minterms: Given *m* variables, a product (AND) containing all *m* exactly once, in either their original or negated form
 - Consider: $\overline{A} \circ \overline{B} \circ \overline{C} \circ \overline{D}$

Identify all possible combinations of inputs which make it true:

Chapter 2: Minterms

- Consider $m \equiv 3$ and A, B, C; Which are Minterms? Which are *not* and why?
 - ABC
 - AVBĀ
 - CBĀ
 - *ĀC*

CI	А	В		Carry Out	Sum
0+	0+	0	=	0	0
0+	0+	1	=	0	1
0+	1+	0	=	0	1
0+	1+	1	=	1	0
1+	0+	0	=	0	1
1+	0+	1	=	1	0
1+	1+	0	=	1	0
1+	1+	1	=	1	1

CI	А	В		Sum
0+	0+	0	=	0
0+	0+	1	=	1
0+	1+	0	=	1
0+	1+	1	=	0
1+	0+	0	=	1
1+	0+	1	=	0
1+	1+	0	=	0
1+	1+	1	=	1

А	В		Sum
0+	0	=	0
0+	1	=	1
1+	0	=	1
1+	1	=	0
0+	0	=	1
0+	1	=	0
1+	0	=	0
1+	1	=	1
	0+ 0+ 1+ 1+ 0+ 0+ 1+	AB0+00+11+00+10+11+01+1	$\begin{array}{cccc} 0+ & 0 & = \\ 0+ & 1 & = \\ 1+ & 0 & = \\ 1+ & 1 & = \\ 0+ & 0 & = \\ 0+ & 1 & = \\ 1+ & 0 & = \end{array}$

- n = 3: CI, A, B
- Where/when is each of these true?
 - ĒI Ā B
 - ĒI A B
 - $CI \circ \overline{A} \circ \overline{B}$
 - CI A B

- Minterms are true for a single combination of inputs
 - This is essentially *selecting* a row of a truth table

CI	А	В		Sum
0+	0+	0	=	0
0+	0+	1	=	1
0+	1+	0	=	1
0+	1+	1	=	0
1+	0+	0	=	1
1+	0+	1	=	0
1+	1+	0	=	0
1+	1+	1	=	1

- n = 3: CI, A, B
- Where/when is Sum true (any place)?

CI	А	В		Sum
0+	0+	0	=	0
0+	0+	1	=	1
0+	1+	0	=	1
0+	1+	1	=	0
1+	0+	0	=	1
1+	0+	1	=	0
1+	1+	0	=	0
1+	1+	1	=	1

- n = 3: CI, A, B
- Where/when is <u>any</u> of these true?

 $um = \overline{CI} \cdot \overline{A} \cdot B + \\ \overline{CI} \cdot A \cdot \overline{B} + \\ CI \cdot \overline{A} \cdot \overline{B} + \\ CI \cdot A \cdot B$

Truth Table -> Sum of Minterms Canonical Form

Important!

- Any simple function (mapping) can be represented as a truth table
 - *m*-bit binary numbers can be used to represent all the inputs
 - The table will need 2^{n} rows to represent all the possible combinations of inputs
 - *m*-bit binary numbers can represent the output(s)
 - Each of the m bits of output can be represent by a sum-of-products (sum of minterms) equation.
 - There's a minterm for each place the bit of *m* is a 1 (true)
 - Canonical form = The "sum" of these Minterms

Sum-of-Products

- All our combinational logic *could* be represented in a table
- All the outputs can be represented as equations
- Those equations can be realized with just the concept of AND, OR, & NOT
 - I.e., we can build computing machines for anything we can represent in a table if we have AND, OR, or NOT.
- The idea of Tables and "Look Up Tables" (LUTs) is really useful!

Give an SOP equation for...

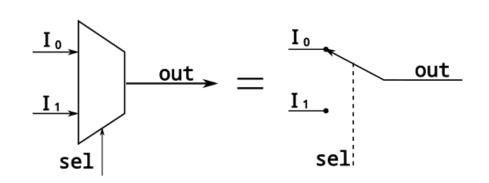
Ir	nputs		Output
A	В	С	0
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Give an SOP equation for...

I	nputs		Output
S	D1	D0	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Give an SOP equation for...

Ir	puts		Output
Sel	11	10	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



https://commons.wikimedia.org/wiki/File:Multiplexer2.svg

Product-Of-Sums

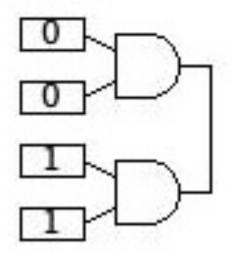
- Alternative to SOP: Uses maxterms (SUM of all input variables) in large product
 - Form: $Y = (A + B + C) \cdot (A + \overline{B} + C) \cdots$
- Can be constructed from table by focusing on:
 - 1) rows with zeros

and

- 2) sums that will be zeros in only those rows
- Sum-of-Prod: Smaller when more 1s than 0s in table; Otherwise Prod-of-Sums is smaller
- This class: slightly focused on Look-up Table (LUT) concept / usually favor SOP

Real Circuits: Xs and Zs

- 0s and 1s represent real-world, continuous values, like voltages
 - Ex: 0 = 0v (gnd); 1 = 5v
 - What's 2.3v?
 - What happens if a 0v wire is connected to 5v wire? ("Contention")
 - X: That's illegal / don't know



Simulator / Language Types

- Bits & Types: 10101100 can have different interpretations
 - Programming languages use data types
- Verilog (Chapter 4)'s logic type:
 - 0, 1, X (unknown), Z (high-impedance)
 - Other simulators often use X for initial value (Helps catch errors and misunderstandings earlier vs. building on a bad assumption!)

Real Circuits: Xs and Zs

- 0s and 1s represent real-world, continuous values, like voltages
 - Ex: 0 = 0v (gnd); 1 = 5v (relative to that ground)
 - Voltage is a *relative* measure (like water pressure: it's the difference between two points)
 - Z: "Floating" value / disconnected
 - Sometimes useful to "disconnect" something to prevent contention (to share wires with different things in control at different times)
 - Sometimes an error when *nothing* is connected (Behavior depends on technology and conditions; Can be random or influenced by external things – like moving a hand near a circuit!)

Circuit "Optimization"

- Time or performance?
- Number of parts?
- Total cost?
- Combination: E.g., Cheapest way to achieve a specific level of performance

Circuit "Optimization"

- Logic Minimization
 - Canonical Form is seldom the minimum number of parts
 - Can "combine" overlapping terms (implicants / product)
 - Prime Implicant: Can't be further reduced
 - Ex: $A \circ B \circ C + A \circ \overline{B} \circ C$
 - True when $A \circ C$. The B and \overline{B} cancel

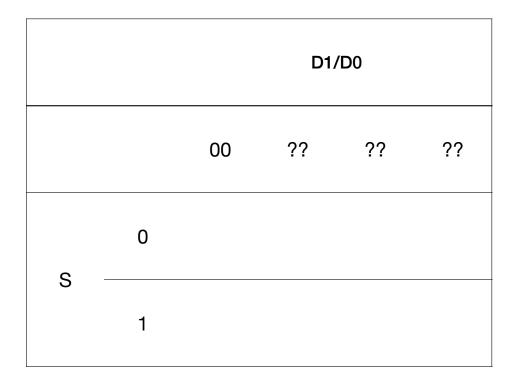
Karnaugh (K) Maps

- A *visual* way to do term optimization
- Rely on tables that allow easy identification of ways to combine implicants
 - Uses Gray code ordering, not counting order!!!
- Only useful for up to 4 variables. I.e., small problems

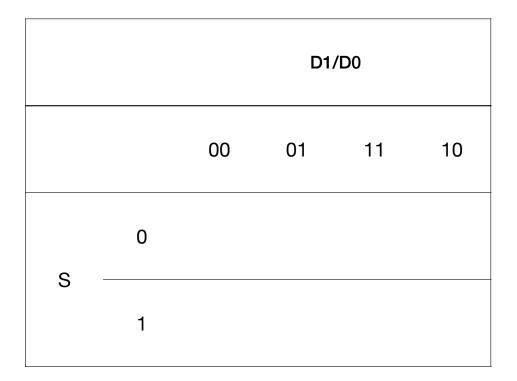
Karnaugh (K) Maps

- Goal: Cover all 1s with circles
 - As few circles as possible & as large as possible
 - Span rectangles with sides of 1, 2, 4, or 8
 - Top/bottom and left/right wrap!

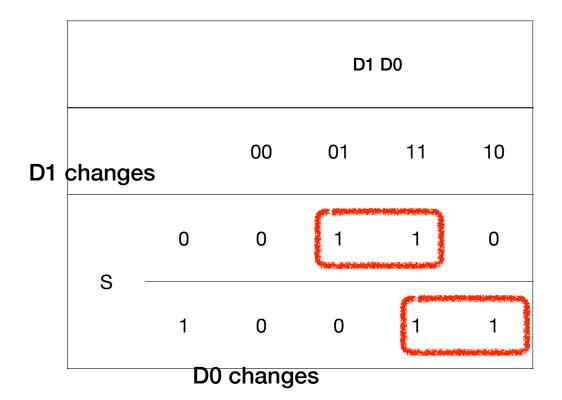
l	nputs		Output
S	D1	D0	О
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



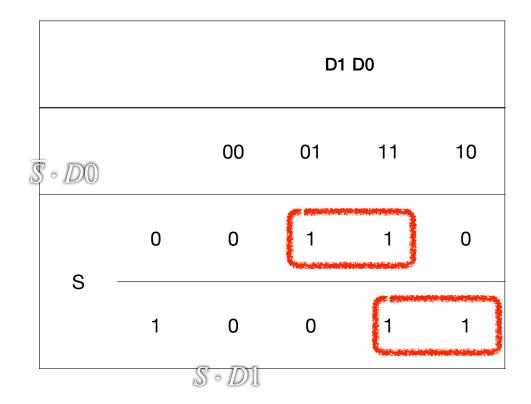
l	nputs		Output
S	D1	D0	О
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



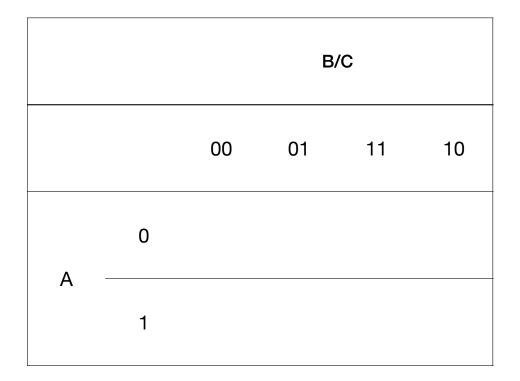
lı	nputs		Output
S	D1	D0	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



l	nputs		Output
S	D1	D0	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

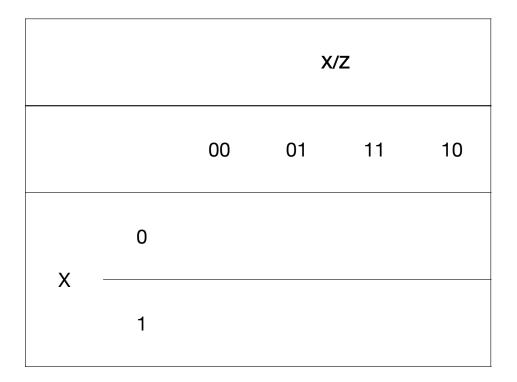


Ir	nputs		Output
А	В	С	0
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0



E3: Give an equation for...

Ir	nputs		Output
Х	Y	Z	0
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0



2.8: More Parts

- Q: We want a 4-to-1 multiplexor. How big is the full truth table?
- Q: Our CPU may need a 32-to-1 multiplexor. How big is the truth table?
- We need a new approach
 - Hierarchical construction

Questions

- Glitches: Partly a result of different path lengths through a circuit
 - An analogy of one type of glitch via different paths
 - Runner Red & Blue both are going to Brookings.
 - They both leave Hillman 70 at the same time
 - They both run about the same speed
 - The each have have a dye to dump in the the fountain (which is initially clean water)
 - Red runs directly to Brookings. Blue goes by Siegle hall (far end of campus) first
 - Describe what happens to the color of the water?

Questions

- · Real-world implications of propagation delay
 - CPU Clock speed is based on the propagation delay
 - Less delay can lead to faster clock speeds and faster programs
- Floating values (covered)
- Multiplexors vs. Encoders vs. Demux vs. Decoder: More on Encoders and Decoders later
 - Encoders and Decoders are about encoding or decoding binary numbers
 - Multiplexors are about "picking" an input of interest. They are a vital part of the data path of CPUs.
- Circuit diagrams get messy as they get bigger. Is there a better way?
 - Hierarchical design (Chapter 3-6)

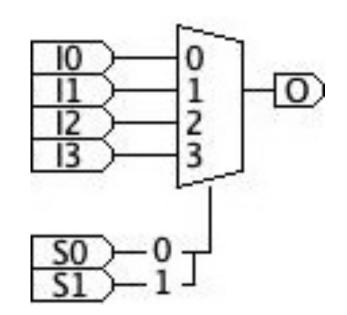
Questions

- How do I understand K-maps?
 - Practice & review
- What about more than 4 variables:
 - Quine–McCluskey algorithm

Hierarchical Approach

- We've created a 2-to-1 MUX
 - Construct a 4-to-1 MUX using 2-to-1 MUXes
 - Focus on desired behavior using existing parts

4-to-1 MUX Behavior



Behavioral Description as a Table

•

Inputs of Interest		Output (In terms of Inputs)
S1	S0	О
0	0	10
0	1	11
1	0	12
1	1	13

Hierarchical Construction of 4-input Mix

Review / Catchup

- SOP equations
 - Table to describe behavior
 - Product equation for "matching" exact pattern
 - Sum of Products for full, single-bit behavior
 - Overall circuit structure
 - Pros: Can't go wrong! Can build any machine....Can be messy though.
 - Product of sums: Apply DeMorgan's law or focus on 0s and construct