CSE 260M / ESE 260 Intro. To Digital Logic & Computer Design

Bill Siever & Michael Hall

5W+H

(Questions welcome at any time)

- Bill Siever & Michael Hall
 - Teaching Prof. In CSE; Lecturer in CSE/ESE
- You?
 - Mix of Computer Engineering, Electrical Engineering, and C.S. Majors
 - Many in Dual Degree program
 - Prerequisites: Intro. To Computer Science (Programming)
 - Other related courses? 132? 361S? 362M?

- Digital Logic!
 - Digital: Usually about binary-based systems
 - Q: Why binary?
- Computer Design
 - Focus on Architecture: How Digital Logic is Used for a Modern Computer

- Class (now): Tues/Thurs 2:30-3:50
- Instructor & TA Office Hours: TBD

• Hillman 60

- Digital logic is critical to
 - All of computing
 - Recent advances in A.I./M.L.
 - Understanding system-level behavior of computers

- Deep understanding benefits:
 - Design at all levels (hardware, software/API)
 - Debugging
- Integration of knowledge
 - Bring together lots of classes / topics

- Overview of Syllabus / Schedule / Webpage
 - <u>https://wustl.instructure.com/courses/143930</u>

- Summary:
 - For credit: Exams, Homework, Studios, Prep work summaries
 - For prep: Lectures/discussion, Prep work (reading, videos, etc.)

Tools / Resources

- Website vs. Canvas
 - Canvas, Gradescope, Github
 - Forum....Piazza? Campuswire pilot?

- Significant change in content from prior years
 - Still being refined
- There will be some challenges & problems
 - That's common in engineering
 - We'll focus on helping you learn the critical concepts despite setbacks

Chapter 1 Sections

- 1. The Game Plan
- 2. Managing Complexity
- 3. Digital Abstraction
- 4. Number Systems
- 5. Logic Gates

Abstraction

- Digital discipline
 - Discrete values
 - Moreover, *binary* (0/1; false/true; Off/On; 0v/3v; No/Yes; ...)
 - Smallest unit of information: a binary digit. Also-know-as a *Bit*
 - (Mostly) Starting at gate level

Goals Today

- Review / Learn (Unsigned) Binary Representations
- Learn Binary Addition
- Review Binary Operations
 - Consider Machines for Binary Operations

Decima	I
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Decimal	
00	
01	
02	
03	
04	
05	
06	
07	
08	
09	
10	

Decima	I	Binary
00		
01		
02		
03		
04		
05		
06		
07		
08		
09		
10		
10		

Decimal Binary 00 0 01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 09	Decimal Binary 00 0 01	
00 0 01 02 03 04 05 06 06 07 08 09	00 0 01 02	
01 02 03 04 05 06 07 08 09	01	
02 03 04 05 06 07 08 09	00	
03 04 05 06 07 08 09	02	
04 05 06 07 08 09	03	
05 06 07 08 09	04	
06 07 08 09	05	
07 08 09	06	
08 09	07	
09	08	
	09	
10	10	

Decimal	Binary
00	0
01	1
02	
03	
04	
05	
06	
07	
08	
09	
10	

Decimal	Binary
00	0
01	1
02	?
03	
04	
05	
06	
07	
08	
09	
10	

Decimal	Binary
00	00
01	01
02	10
03	
04	
05	
06	
07	
08	
09	
10	

Decimal	Binary
00	0000
01	0001
02	0010
03	
04	
05	
06	
07	
08	
09	
10	

Binary
0000
0001
0010
0011

Decimal	Binary
00	0000
01	0001
02	0010
03	0011
04	0100
05	
06	
07	
08	
09	
10	

Binary
0000
0001
0010
0011
0100
0101

Decimal	Binary
00	0000
01	0001
02	0010
03	0011
04	0100
05	0101
06	0110
07	
08	
09	
10	

Decimal	Binary
00	0000
01	0001
02	0010
03	0011
04	0100
05	0101
06	0110
07	0111
08	
09	
10	

Decimal	Binary
	,
00	0000
01	0001
02	0010
03	0011
04	0100
05	0101
06	0110
07	0111
08	1000
09	
10	

Decimal	Binary
00	0000
01	0001
02	0010
03	0011
04	0100
05	0101
06	0110
07	0111
08	1000
09	1001
10	

Decimal	Binary
00	0000
01	0001
02	0010
03	0011
04	0100
05	0101
06	0110
07	0111
08	1000
09	1001
10	1010

Binary Basics: Number Line

Conversions

Place Value: Base 10 Example: 123

Digits	1	2	3
Place Value	100	10	1
Place Value In terms of Base	10 ²	10 ¹	10 ⁰
Expansion	1×10 ²	+2×10 ¹	+3×10 ⁰

Place Value: Base 2 Example: 110₂ (or 3'b110)

Digits	1	1	0
Place Value (Decimal)	4	2	1
Place Value In terms of Base	2 ²	21	20
Expansion	1×2²	+1×21	+0×2º

Easy Conversion: Binary to Decimal

Place Value (Decimal)	128	64	32	16	8	4	2	1
Place Value In terms of Base	27	26	25	24	2 ³	22	21	20

Problem: What is the decimal value of 5'b10011

Place Value (Decimal)	128	64	32	16	8	4	2	1
Place Value In terms of Base	27	26	2 ⁵	24	2 ³	22	21	20

Easy Conversion: Decimal to Binary Greedy Algorithm Approach: Right to Left

1. Start with value n

2.Find the exponent, k, of the *largest* power of 2 that is *smaller* than n. (I.e., first power of 2 that can be subtracted without going negative)

3.For k down to 0:

1.If $2^k \le n$

1.Write down a 1 (and move right)

2.*n* = $n - 2^k$

2.Else

1.Write down a 0 (and move right)

Example: Convert 27 to binary (With the greedy approach)

- First power of 2 less than 27
 - 16 (2⁴)
- n = 27 16 = 11

• n = 11 - 8 = 3

• n = 3 - 2 = 1

• n = 1 - 1 = 0

Place Value	128	64	32	16	8	4	2	1
Place Value	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Result				1	1	0	1	1

Arithmetic

Decimal Addition

+	1	2	3	4	Б	6	7	8	q	10
1	2	3	4	Б	6	7	8	q	10	Ш
2	3	4	Б	6	7	8	q	ю	П	12
3	4	Б	6	7	8	q	10	Ш	12	13
4	Б	6	7	8	q	ю	Ш	12	13	14
б	6	7	8	q	10	Ш	12	13	14	15
6	7	8	q	ю	Ш	12	13	14	15	16
7	8	q	10	п	12	13	14	15	16	17
8	q	ю	П	12	13	14	15	16	17	18
q	Ю	П	12	13	14	15	16	17	18	Id
10	П	12	13	14	15	16	17	18	19	20

B VJUS

Binary Addition Rules

Condensed

- No ones: 0+0+0 = 00
- One one: 0+0+1 = 01
- Two Ones: 0+1+1 = 10
- Three Ones: 1+1+1 =11

Binary Addition Rules: Fully Elaborated

0+	0+	0	=	00
0+	0+	1	=	01
0+	1+	0	=	01
0+	1+	1	=	10
1+	0+	0	=	01
1+	0+	1	=	10
4.				
	1+	0	=	10

• Add 4'b1010 + 4'b0011

Review: Operations on Booleans

Review: Boolean Logic Operations

LOGIC OPERATION	COMMON PROG. LANG. SYMBOLS	FIRST-ORDER LOGIC	DIGITAL LOGIC
And	&&, and	٨	* (multiplication)
Or	, or	V	+
Not / Negation	!, not	٦	/ (also line over)

Gates: Conceptual Machines for Boolean Ops

LOGIC OPERATION	COMMON PROG. LANG. SYMBOLS	FIRST-ORDER LOGIC	DIGITAL LOGIC	GATE
And	&&, and	٨	* (multiplication)	<u>See here</u>
Or	, or	V	+	<u>See here</u>
Not / Negation	!, not	٦	/ (also line over)	<u>See here</u>

Gates: Machines for Boolean Ops

(A look at "Computer Engineering for Babies")

For Thursday

- Read Chapter 1: 1.1-1.5
 - Complete the questions (Canvas) before 11am (not officially due)
 - Future prep work questions are 11:59pm on Mondays
 - Reading is almost all of Chapters 1-7. Can work ahead!